HANDOUT:

https://mathlab.utsc.utoronto.ca/bretscher/b63/tutorials/w2.pdf

	$\ln(n)$	lg(n)	$lg(n^2)$	$(lgn)^2$	n	n * lg(n)	2 ⁿ	2 ⁽³ⁿ⁾
$\ln(n)$	Y	Y	Y	Y	M	Ý	Y	X
lg(n)	Ý	Y	$^{\prime}\gamma$	X	X	X	9	γ
$lg(n^2)$	Ý	Y	Y	Y	Ý	ý	X	×
$(\lg n)^2$				7	Y	γ'	ý	Ý
n					Y	γ	Y	Y
n * lg(n)						- Y	$\langle \rangle$	×.
2 ⁿ							Y	4
2 ⁽³ⁿ⁾							ľ.	Y

(Remember that lg means log base 2.)

In each cell, fill in "Y" iff (its row function)∈ O(its column function).

Fill in proofs for selected big-O cells:

- 1. $n \in O(n \lg(n))$, using the definition of big-O:
- nlg(n) ∉ O(n) using the definition of big-O: (Note: This can be explained as a proof by contradiction...other ways possible too).
- 3. $2^{(3n)} \notin O(2^n)$, using a limit theorem from lecture (you may not have seen the limit theorem if your tutorial is before the Wed. class).

Some practice questions:

1. $6n^5 + n^2 - n^3 \in \Theta(n^5)$ 2. $3n^2 - 4n \in \Omega(n^2)$

I. WTS:
$$\exists c_{1}n_{0}$$
 such that $0 \le n \le cn |g(n)| \forall n \ge n_{0}$
Intuition: Note that $|g(2) = 1$, so
 $n \le n |g(n)| \forall n \ge 2$ since
 $|g(n)| \circ n |g|$ increases
Formally: Choose $n_{0} = 2$, $C = 1$
Since $n \ge n_{0} = 2$
 $2 \le n$
 $|g| = both sides$
 $\implies 1 \le lg n$

Now consider

$$= n \cdot 1$$

$$\leq n \cdot 1g(n)$$

$$= c \cdot n \cdot 1g(n)$$
and clewly $0 \leq n$
2. Proof by contradiction
Suppose algan $\in O(n)$

$$\Rightarrow \exists c, n, st \quad 0 \leq n | yn \leq n \quad \forall n \geq n_0$$
Change the condition
 $\forall_{n \geq n_0} \quad t \in \forall n \geq mox(n_0, 1)$
 $\forall_{n \geq n_0} \quad t \in \forall n \geq mox(n_0, 1) \geq n_0$
Now $\forall n \geq max(n_0, 1)$
 $n | yn \leq c \qquad since \quad n \geq 1$
 $n \leq 2^c$
Now choose $n = max(n_0, 1, 2^c + 1)$, then
 $n \geq max(n_0, 1)$ and $n \leq 2^c$. However this
 $n \geq 2^c$ since $2^c \geq n \geq n, \geq 1$.

B63 W21 Page 2

CONTRADICTION
3. Use limit theorem:

$$\lim_{n \to \infty} \frac{2^{(3n)}}{2^n}$$

 $= \lim_{n \to \infty} 2^{(3n-n)}$
 $= \lim_{n \to \infty} 2^{(3n-n)}$
 $= \lim_{n \to \infty} 2^{2n}$
 $= 2^{(3n)} \notin O(2^n)$

PRACTICE:
(. WTS:
$$\exists c_1, c_2, n_0 \text{ st} 0 \le c_1 n^5 \le 6n^5 + n^2 - n^3 \le c_1 n^5$$

 $\forall n \ge n_0$
Big $Gn^5 + n^2 - n^3$
 $\le 6n^5 + n^2$
 $\le 6n^5 + n^2$
 $\le 6n^5 + n^5$
 $\le 7n^5$
 $\Rightarrow C_1 = 5, c_2 = 7, n_0 = 1$

2. WTS: \exists_{c,n_0} st $0 \le n^2 \le 3n^2 - 4n$ $\forall n \ge N_0$

$$(n^{2} \leq 3n^{2} - 4n)$$

$$(n \leq 3n - 4) \quad \forall n \geq 1$$

$$4 \leq (3 - C)n$$

$$\frac{4}{3 - C} \leq n \quad \Rightarrow let \quad (=1 \Rightarrow n \geq 2)$$

$$= 3n = 2$$

$$let \quad c=2 \Rightarrow n \geq 4 \Rightarrow n_{0} = 4$$

$$3n^{2} - 4n$$

 $23n^{2} - 2n^{2} + n=2$
 $= n^{2}$
 $= (-1), n_{0} = 2$

Additional Notes:

Recall logarithms are related to each other by some constant thanks to the change of base formula: $log_b(x) = log_c(x) / log_c(b)$ Which is why we were able to easily conclude that lg(n) in O(ln(n)) and ln(n) in O(lg(n)).