SUMMARY OF SQL QUERIES

SELECT <attribute and function list>
FROM <table list>

[WHERE <condition>]

[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]

[ORDER BY <attribute list>];

Assemble all tables according to From clause (“,” means to use x).
Keep only tuples matching Where clause.

Group into blocks based on Group By clause.

Keep only blocks matching Having clause.

Create one tuple for each block using Select clause.

o 0~ b=

Order resulting tuples according to Order By clause.

Tables for the Example

Student
ID | First| Last| Year

Grade
ID| Code | Mark | YearTaken

Module
Code |Title | Credits

A Final Example

e Examiners’ reports e We want the results

e We want a list of e Sorted by year then
students and their average mark (High
average mark to low) then last

e For first and second name, first name, and
years the average is finally ID
for that year e To take into account

e For finalists it is 40% the number of credits
of the second year each module is worth
plus 60% of the final e Produced by a single
year average. query

We'll Need a UNION

e Finalists are treated
differently

e Write one query for <QUERY FOR FINALISTS>
the finalists

e Write a second query UNION
for the first and
second years

e Use a UNION to join
them together

<QUERY FOR OTHERS>

We’'ll need to Join the Tables

e Both of the e This is a natural join
subqueries need operation
information from all e We could use a
the tables NATURAL JOIN

statement, and hope
that our version of
SQL can do it

e Safer to just use a
WHERE clause

e The student ID, name
and year

e The marks for each
module and the year
taken

e The number of credits
for each module

The Query So Far

SELECT <some information>
FROM Student, Module, Grade
WHERE Student.ID = Grade.ID
AND Module.Code = Grade.Code
AND <student is in third year>

UNION

SELECT <some information>
FROM Student, Module, Grade
WHERE Student.ID = Grade.ID
AND Module.Code = Grade.Code
AND <student is in first or second year>

Information for Finalists

e The average is hard

e We don't have any
statement to separate

e\We need to retrieve
e Compute average

mark, weighted 40-60
across years 2 and 3
First year marks need
to be ignored

The ID, Name, and
Year are needed as
they are used for

years 2 and 3 easily

We can exploit the
fact that 40 = 20*2
and 60 = 20*3, so
YearTaken and the
weighting have a
simple relationship

ordering

Information for Finalists

SELECT Year, Student.ID, Last, First,
SUM((20*YearTaken/100) *Mark*Credits) /120
AS AverageMark
FROM Student, Module, Grade
WHERE Student.ID = Grade.ID
AND Module.Code = Grade.Code
AND YearTaken IN (2,3)

AND Year = 3
GROUP BY Year, Student.ID, First, Last

Information for Other
Students

e Other students are easier than finalists

e We just need to average their marks where
YearTaken and Year are the same

e As before we need the ID, Name, and Year
for ordering

Information for Other
Students

SELECT Year, Student.ID, Last, First,
SUM (Mark*Credits) /120 AS AverageMark
FROM Student, Module, Grade
WHERE Student.ID = Grade.ID
AND Module.Code = Grade.Code
AND YearTaken = Year
AND Year IN (1,2)
GROUP BY Year, Student.ID, First, Last

The Final Query

SELECT Year, Student.ID, Last, First,
SUM((20*YearTaken/100) *Mark*Credits) /120 AS AverageMark
FROM Student, Module, Grade
WHERE Student.ID = Grade.ID AND Module.Code = Grade.Code
AND YearTaken IN (2,3) AND Year = 3
GROUP BY Year, Student.ID, First, Last

UNION

SELECT Year, Student.ID, Last, First,
SUM (Mark*Credits) /120 AS AverageMark
FRCOM Student, Module, Grade
WHERE Student.ID = Grade.ID AND Module.Code = Grade.Code
AND YearTaken = Year AND Year IN (1,2)
GROUP BY Year, Student.ID, First, Last

ORDER BY Year desc, AverageMark desc, First, Last, ID

inventory(inventory id, user_id, item_id)
item(item id, name)
favs(fav_id, user_id, item_id)

We want a query to remove a given user’s items, but
only duplicate copies. However, do not remove any
copies of an item if the user has it favourited.

1.

DELETE FROM inventory WHERE inventory_ id IN <user’s
duplicate items, but not favourited>

2.
SELECT item_id FROM favs WHERE user_id = $user_id

This query will get the user’s favourited items

3.

SELECT MIN(inventory id) as inv_id, user_id, item_id
FROM inventory GROUP BY user_id, item_id

This query will get only one copy of the user’s items

4.

SELECT inventory id

FROM inventory

LEFT JOIN

(SELECT MIN(inventory id) as inv_id, user_id, item_id
FROM inventory GROUP BY user_id, item_id) as KeepRows
ON inventory.inventory id = KeepRows.inv_id

WHERE KeepRows.inv_id IS NULL AND inventory.user _id =
$user_id

In the left join, all duplicate items will have
KeepRows.inv_id as null because of the left join

5. The final query

DELETE FROM inventory

WHERE inventory id

IN

(SELECT inventory_id

FROM inventory

LEFT JOIN

(SELECT MIN(inventory_id) as inv_id, user_id, item_id
FROM inventory GROUP BY user_id, item_id) as KeepRows
ON inventory.inventory id = KeepRows.inv_id

WHERE KeepRows.inv_id IS NULL AND inventory.user_id =
$user_id AND inventory.item_id NOT IN (SELECT item_id
FROM favs WHERE user_id = $user_id))

