
CSCC43 Tutorial #1
Relational Algebra

Andrew Leung

Administration

Email: andrewyk.leung@mail.utoronto.ca

Notes and Recordings: On Quercus

There will be no tutorials next week (holiday)!

Today’s material can be found on Quercus under the ‘Tutorial Week 2’
page

mailto:andrewyk.leung@mail.utoronto.ca

Schema 1

branch(branch_name, branch_city, assets)
customer(ID, customer_name, customer_street, customer_city)
loan(loan_number, branch_name, amount)
borrower(ID, loan_number)
account(account_number, branch_name, balance)
depositor(ID, account_number)

Consider the bank database above. Assume that branch names and
customer IDs uniquely identify branches and customers, but loans and
accounts can be associated with more than one customer.

Schema 1

1. What are the appropriate primary keys?
• branch: branch_name

• customer: ID

• loan: loan_number

• borrower: ID, loan_number

• account: account_number

• depositor: ID, account_number

Note: We allow customers to have more than one account and more than one loan. This is why both
ID and loan_number are keys for the borrower to uniquely identify the borrower tuple. Similarly,
both ID and account_number are keys for the depositor to uniquely identify depositor tuple.

branch(branch_name, branch_city, assets)
customer(ID, customer_name, customer_street, customer_city)

loan(loan_number, branch_name, amount)
borrower(ID, loan_number)

account(account_number, branch_name, balance)
depositor(ID, account_number)

Schema 1

2. Given your choice of primary keys, identify appropriate foreign keys.
• loan: branch_name referencing branch

• borrower: ID referencing customer, loan_number referencing loan

• account: branch_name referencing branch

• depositor: ID referencing customer, account_number referencing account

branch(branch_name, branch_city, assets)
customer(ID, customer_name, customer_street, customer_city)

loan(loan_number, branch_name, amount)
borrower(ID, loan_number)

account(account_number, branch_name, balance)
depositor(ID, account_number)

Schema 1

3. Give an expression in relational algebra to find each loan number
with a loan amount greater than $10000.

branch(branch_name, branch_city, assets)
customer(ID, customer_name, customer_street, customer_city)

loan(loan_number, branch_name, amount)
borrower(ID, loan_number)

account(account_number, branch_name, balance)
depositor(ID, account_number)

Schema 2

Consider the employee database of with the appropriate primary keys
underlined

employee(emp_ID, person_name)

company(company_name, rank)

roster(emp_ID, company_name, salary, city)

roster[emp_ID] ⊆ employee[emp_ID]

roster[company_name] ⊆ company[company_name]

Schema 2

1. Find all the IDs of all employees with the name “Rahul” or with the
name “Emma”

employee(emp_ID, person_name)

company(company_name, rank)

roster(emp_ID, company_name, salary, city)

roster[emp_ID] ⊆ employee[emp_ID]

roster[company_name] ⊆ company[company_name]

Schema 2

2. Find the name of each employee who lives in city Miami

employee(emp_ID, person_name)

company(company_name, rank)

roster(emp_ID, company_name, salary, city)

roster[emp_ID] ⊆ employee[emp_ID]

roster[company_name] ⊆ company[company_name]

Schema 2

3. Find the name of each employee whose salary is greater than
$100000.

employee(emp_ID, person_name)

company(company_name, rank)

roster(emp_ID, company_name, salary, city)

roster[emp_ID] ⊆ employee[emp_ID]

roster[company_name] ⊆ company[company_name]

Schema 2

4. Find the ID and names of each employee who lives in Miami and
whose salary is greater than $100000.

employee(emp_ID, person_name)

company(company_name, rank)

roster(emp_ID, company_name, salary, city)

roster[emp_ID] ⊆ employee[emp_ID]

roster[company_name] ⊆ company[company_name]

Schema 2

5. Find the names of companies that have a rank of at least 5 and are in
Miami.

employee(emp_ID, person_name)

company(company_name, rank)

roster(emp_ID, company_name, salary, city)

roster[emp_ID] ⊆ employee[emp_ID]

roster[company_name] ⊆ company[company_name]

Schema 3

Suppliers(sID, sName, address)

Parts(pID, pName, colour)

Catalog(sID, pID, price)

Catalog[sID] ⊆ Suppliers[sID]

Catalog[pID] ⊆ Parts[pID]

Solve the following queries using only select, project, cartesian
product, and natural join.

Schema 3

1. If sID is a key for the Suppliers relation, could it be a key for the
Catalog relation?
• No.

• Keys are relative to a particular relation, just because it is a key in one relation doesn’t mean it is in one
another.

• It is not a key for Catalog mainly because we want to be able to list multiple parts by one supplier in our
catalog.

Suppliers(sID, sName, address)

Parts(pID, pName, colour)

Catalog(sID, pID, price)

Catalog[sID] ⊆ Suppliers[sID]

Catalog[pID] ⊆ Parts[pID]

Schema 3

2. Find the names of all red parts.

Suppliers(sID, sName, address)

Parts(pID, pName, colour)

Catalog(sID, pID, price)

Catalog[sID] ⊆ Suppliers[sID]

Catalog[pID] ⊆ Parts[pID]

Schema 3

3. Find the sIDs of all suppliers who supply a part that is red or green.

Suppliers(sID, sName, address)

Parts(pID, pName, colour)

Catalog(sID, pID, price)

Catalog[sID] ⊆ Suppliers[sID]

Catalog[pID] ⊆ Parts[pID]

Schema 3

4. Find all prices for parts that are red or green.

Suppliers(sID, sName, address)

Parts(pID, pName, colour)

Catalog(sID, pID, price)

Catalog[sID] ⊆ Suppliers[sID]

Catalog[pID] ⊆ Parts[pID]

Schema 3

5. Find the names of all suppliers who supply a part that is red or
green.

Suppliers(sID, sName, address)

Parts(pID, pName, colour)

Catalog(sID, pID, price)

Catalog[sID] ⊆ Suppliers[sID]

Catalog[pID] ⊆ Parts[pID]

Schema 3

6. Find the sIDs of all suppliers who supply a part that is red and green.
• It is not possible for a part to be red and green.

• Each tuple has only one colour, and each part has only one tuple (since pID is a key), so no part
can be recorded as both red and green.

Suppliers(sID, sName, address)

Parts(pID, pName, colour)

Catalog(sID, pID, price)

Catalog[sID] ⊆ Suppliers[sID]

Catalog[pID] ⊆ Parts[pID]

